3M1 Mathematical Methods Tripos Revision

Posted by Jingbiao on April 10, 2021, Reading time: 1 minute.

\( \require{amstext} \require{amsmath} \require{amssymb} \require{amsfonts} \newcommand{\norm}[1]{\lVert #1 \rVert} \)

Linear Algebra

Hermitian

  • Conjugate Transpose: \( M^H = \overline{M^T} = \overline{M}^T \)
  • Hermitian: if $M^H = M$
    • $(AB)^H = B^H A^H$
    • $A^H A $ must be hermitian
  • Unitary matrix: if $M^H = M^{-1}$

  • Hermitian positive definite Matrix: \( x^H M x > 0 \forall x \in \mathcal{C}^n\backslash 0 \)

Vector/Matrix Norms

Vector Norm
  • Vector $l_p$ norms: \( \norm{x} = (\sum_{i} |x_i|^p )^{1/p} \)

    • Infinite norm just find the maximum term of the vector \( \norm{x}_{\infty} = \max_i |x_i| \) which is also knownas the maiximum norm.
  • Matrix induced norm: \( \norm{x}^2_{A} = x^H A x \)

  • Properties:

    • Linearity: \( \norm{kx} = |k| \norm{x} \)
    • Triangle inequality: \( \norm{x+y} \le \norm{x} + \norm{y} \)
    • Another inequality: \( \norm{xy} \le \norm{x}\norm{y} \)
Matrix Norm
  • Operator norms \( \norm{A} = \max_{\forall x \in \mathcal{C}^n\backslash 0} \frac{\norm{Ax}}{\norm{x}} \)

    • This norm measures the maximum amount by which the matrix $A$ can re-scale a vector $x$
  • 1-norm: \( \norm{A} =\max_j \sum_{i=1}^n |a_{ij}| \) which is column of A with maximum $l_1$ norm
  • $\infty$ norm: \( \norm{A} = \max_i \sum_{j}^n|a_{ij}| \) which is row of A with maximum $l_1$ norm

  • $l_2$ norm: \( \norm{A} = \sqrt{\lambda_{\max}(A^H A)} \)
Condition number
  • $\kappa(A) = \norm{A}\norm{A^{-1}}$
  • For the 2-norm: \( \kappa_2(A) = \frac{\sqrt{\lambda_{\max}A^H A}}{\sqrt{\lambda_{\min}A^H A}} \)
    • which is the max singular value over min singular value
  • Since eigenvalue is reciprocal for matrix inverse, if A is Hermitian, then: \( \kappa_2(A) = \frac{|\lambda(A)|max}{|\lambda(A)|min} \)
  • A matrix with a large condition number is ill-conditioned, which lead to instable computation $\rightarrow$ small error lead to large computation error

Iterative Methods for linear systems

Optimisation

  • Linear Programming solved by using Simplex Algorithm

Monte Carlo