
3F7 Information Theory and Coding

Howard Mei

December 29, 2020

1 Probability and Entropy

1.1 Discrete Random Variables

• Probability mass function (pmf): PX(x) = Pr(X = x). x ∈ χ is a realisation of the random
variable x

• Cumulative distribution function (cdf): Fx(a) = Pr(X ≤ a) =
∑

x≤a PX(x)

• Expected value: EX =
∑

a a · Px(a)

• Variance:V ar(X) = E[(X − EX)2] = E[X2]− (EX)2.

• V ar(aX) = a2 · var(X)

• A function g(X) of rvX is also an rv

• Expected value of functions of random variables : E[g(X)] =
∑

a g(a) · PX(a)

1.2 Jointly distributed random variables

1.2.1 Discrete rvs X,Y

Marginal distributions :

PX(x) =
∑
y

PXY (x, y), PY (y) =
∑
x

PXY (x, y)

Conditional distribution of Y given X :

PY |X(y|x) =
∑
y

PXY (x, y), for x such that PX(x) > 0

1.2.2 Key properties of jointly distributed rvs

• Product rule:

PXY Z = PXPY |XPZ|Y X

= PY PZ|Y PX|ZY

= PY PX|Y PZ|XY

= PZPX|ZPY |XZ

= PZPY |ZPX|Y Z

1

• Sum rule (marginalization):

PXY (x, y) =
∑
z

PXY Z(x, y, z)

PX(x) =
∑
y,z

PXY Z(x, y, z) =
∑
y

PXY (x, y)

These properties extend naturally to multiple jointly distributed rvs (X1, ..., Xn)

1.2.3 Continuous random variables

• Joint density function fXY (x, y)

• Pr(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b
x=a

∫ d
y=c

fXY (x, y) dxdy

• For jointly Gaussian rvs, specified by mean vector and covariance matrix

• Conditional density, product and sum rule analogous to discrete case with density replacing pmf
and integrals instead of sums

1.2.4 Independence

Ḋiscrete random variables X1, ..., Xn are statistically independent if

PX1...Xn(x1, ...xn) = PX1(x1) · PX2(x2) ... PXn(xn) ∀(x1, ..., xn)

From product rule :

PX1...Xn(x1, ..., xn) = PX1(x1) · PX2|X1(x2|x1) ... PXn|Xn−1...X1(xn|xn−1, ..., x1)

Therefore, when independent:
PXi|{Xj}j 6=i = PXi

Often, independent and identically distributed (i.i.d.) random variables are considered in this course

1.3 Entropy

1.3.1 Define

The entropy of a discrete random variable X with pmf P4 is

H(X) =
∑
x

P (x) · log2

1

P (x)
bits

• H(X) can be written as E[log2
1

P (x)
]

• H(X) can be seen as the uncertainty associated with the rv X.

2

1.3.2 Properties

L̇et X be discrete random variable takes M different values with different probability. Then:

• H(X) ≥ 0

• H(X) ≤ logM

• Equiprobable distribution (1
M
, ..., 1

M
) has the maximum entropy equal to logM . Seen as equal

probability gives maximum uncertainty in the outcome

Proof:

• For any x ∈ χ, 0 ≤ P (X) ≤ 1 , 1
P (X)

≥ 1 , and hence log 1
P (X)

≥ 0 , H(X) ≥ 0

Notes when there is a certain probability of P (X = a) = 1, H(X) = 0 means no uncertainty
in outcome.

• Proof of H(X) ≤ logM

H(X)− logM =
∑
x

P (x)log
1

P (X)
−
∑
x

P (x) logM

=
1

ln 2

∑
x

P (x) ln
1

MP (X)

≤ 1

ln 2

∑
x

P (x)

(
1

MP (x)
− 1

)
By inequality rule: lnx ≤ (x− 1)

=
1

ln 2

(∑
x

1

M
−
∑
x

P (x)

)
= 0

Hence H(X)− logM ≤ 0 H(X) ≤ logM

• Proof of maximum entropy Equiprobable distribution:

H(X) = logM when

ln
1

MP (X)
=

(
1

MP (x)
− 1

)
when

MP (x) = 1

P (x) = 1/M

1.3.3 Joint and Conditional Entropy

• The joint entropy of X, Y is

H(X, Y) =
∑
x,y

PXY (x, y) log
1

PXY (x, y)

• The conditional entropy of Y given X is

H(Y |X) =
∑
x,y

PXY (x, y) log
1

PY |X(y|x)

3

– Can be seen as the uncertainty for Y is different for different X, H(Y |X) is the average
uncertainty in Y given X

H(Y |X) =
∑
x

PX(x)
∑
y

PY |X(y|x) log
1

PY |X(y|x)︸ ︷︷ ︸
H(Y—X=x) another entropy equation

– H(X, Y) = H(X) +H(Y |X) = H(Y) +H(X|Y)

– When X,Y are independent H(Y |X) = H(Y) as uncertainty of Y is not changed if indepen-
dent.

– When Y = f(X), H(Y |X) = H(f(X)|X) = 0 as we can predict any f(X) from X, no
uncertainty. However, inversely H(X|Y) ≥ 0 zeros only when the function is one to one.

H(X, Y) = H(X|Y) +H(Y) = H(Y |X) +H(X) = H(X)

1.3.4 Joint Entropy of Multiple RVs

•
H(X1, ..., Xn) =

∑
x1,..,xn

PX1..Xn(x1, .., xn) log
1

PX1..Xn(x1, .., xn)

• Chain rule of joint entropy

H(X1, ..., Xn) = H(X1) +H(X2|x1) +H(Xn|Xn−1, .., X1)

=
n∑
i=1

H(Xi|Xi−1, .., X1)

where the conditional entropy

H(Xi|Xi−1, .., X1) =
∑
x1,..,xi

PX1..Xi(x1, .., xi) log
1

PXi|X1,..,Xi−1
(xi|x1, .., xi−1)

• If independent, then

H(X1, ..., Xn) =
n∑
i=1

H(Xi)

• proof of Chain rule

P (x1, ..., xn) = PX1(x1)P (x2|x1)...P (xn|xn−1, ..., x1) =
n∏
i=1

P (xi|xi−1, ..., x1)

4

H(X1, ..., Xn) =
∑
x1,..,xn

P (x1, .., xn) log
1

P (x1, .., xn)

= −
∑
x1,..,xn

P (x1, .., xn) logP (x1, .., xn)

= −
∑
x1,..,xn

P (x1, .., xn) log
n∏
i=1

P (xi|xi−1, ..., x1)

= −
∑
x1,..,xn

n∑
i=n

P (x1, .., xn) logP (xi|xi−1, ..., x1)

= −
n∑
i=n

∑
x1,..,xn

P (x1, .., xn) logP (xi|xi−1, ..., x1)

= −
n∑
i=n

∑
x1,..,xi

P (x1, .., xi) logP (xi|xi−1, ..., x1)

=
n∑
i=1

H(Xi|Xi−1, .., X1)

5

2 Law of Large Numbers, Typicality, Data Compression

2.1 Estimating Tail probability

• We want to bound the probability of rare events, corresponding to probability mass in the ’tails’
of the pmf/density function

e.g. What is the bound for P (X > 20) for average 5 cars/minute without knowing the
distribution?

• Markov and Chebyshev inequalities are ways to bound tail probabilities with limited information.

– Markov is for non-negative rvs and requires only the mean

– Chebyshev is for general rvs and requires mean and variance

2.1.1 Markov’s Inequality

• For a non-negative rv X and any a > 0,

P (X ≥ a) ≤ E[X]

a

• Proof:

E[X] =
∑
r≥0

rP (X = r) =
∑

0≤r≤a

rP (X = r) +
∑
r≥a

rP (X = r)

For r ≥ a,
∑
r≥a

rP (X = r) ≥
∑
r≥a

aP (X = r)

E[X] ≥
∑

0≤r≤a

rP (X = r) +
∑
r≥a

aP (X = r)

=
∑

0≤r≤a

rP (X = r) + aP (X ≥ a)

E[X] ≥ aP (X ≥ a)

2.1.2 Chebyshev’s inequality

• Bound the tail probabilities of deviations around the mean

• For any rv X and a > 0,

P (|X − EX| ≥ a) ≤ V ar(X)

a2

• Proof:

P (|X − EX| ≥ a) = P (|X − EX|2 ≥ a2)

Let Y = |X − EX|2

Apply Markov’s, P (Y ≥ a2) ≤ EY
a2

Note that EY = V ar(X)

P (|X − EX| ≥ a) ≤ V ar(X)

a2

6

2.1.3 Weak Law of Large Numbers (WLLN)

• ”Empirical average converges to the mean”

• Let X1,X2, be a sequence of i.i.d. rvs with finite mean µ. Sn = 1
n

∑n
i=1Xi

– Informal WLLN: Sn → µ as n→∞
– Formal WLLN: For any ε > 0, limn→∞P (|Sn − µ| ≥ ε) = 0

• Proof:

By Chebyshev’s inequality:

P (|Sn − µ| ≥ ε) ≤ V ar(Sn)

ε2

Also:

V ar(Sn) = 1/n2 · V ar(
∑
i

Xi) = 1/n2 ·
n∑
i=1

V ar(Xi) = 1/n2 · nσ2 =
σ2

n

Hence:

P (|Sn − µ| ≥ ε) ≤ σ2

nε2

2.2 Typical Set

• Simple Example: Consider an i.i.d. Bernoulli(1
4
) source.

P (Xi = 1) =
1

4
P (Xi = 0) =

3

4
for i = 1, 2, 3, ...

1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2. 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

– 16 bits sequence

– Probability of first sequence = (3
4
)16

– Probability of second sequence = (1
4
)4(3

4
)12

– The first sequence is 34 more likely than second!!

• Typical Sequences:

– Though less likely than first sequence, the second is more ”typical” of the (1
4
, 3

4
) source If

X1, ...Xn are chosen i.i.d. Bernoulli(p), then for large n:

– With high probability, the fraction of ones observed sequence will be close to p by WLLN

– With high probability the observed sequence will have probability close to pnp ∗ (1− p)n(1−p)

– Any number can be written as 2log a Hence,

pnp ∗ (1− p)n(1−p) = (2log p)np(2log(1−p))n(1−p) = 2−nH2(p)

– For large n, with high probability we will observe a typical sequence . Informally, a typical
sequence is one whose probability is close to 2−nH2(p)

7

• Asymptotic Equipartition Property (AEP)
The AEP makes this for any i.i.d. discrete source not just Bernoulli sequences.

– If X1, ...Xn are chosen i.i.d. Px, then for any ε > 0

lim
n→∞

Pr

(∣∣∣∣−1

n
logPX(X1, X2, ..., Xn)−H(X)

∣∣∣∣ < ε

)
= 1

– −1
n

logPX(X1, X2, ..., Xn) is a random variable, a fucntion of rvs is a rv

– AEP says this rv converges in probability to H(X) a constant, as n→∞
– Proof:

∗ let Yi = − logPX(Xi)

∗ Functions of independent rvs are also independent rvs

∗ WLLN for Yi’s says that for any ε > 0 (Note the < sign replaced the ≥)

lim
n→∞

Pr(| 1
n

∑
i

Yi − E[Yi]| < ε) = 1

∗ Sum of log become log of multiply:∑
i

Yi = − log[PX(X1)...PX(Xn)] = − logPX(X1, X2, ..., Xn)

∗ E[Yi] = H(X)

• The typical set

– Definition:
The typical set Aε,n with respect to P is the set of sequence x1, ..., xn ∈ χn with the property

2−n(H(X)+ε) ≤ P (x1, ..., zn) ≤ 2−n(H(X)−ε)

”Sequences with probability concentrated around 2−n(H(X)”

– Dependence on n and ε A sequence belonging to the typical set is called an ε-type sequence

• Properties of the Typical Set

– Property 1:

∗ if Xn = (X1, ..., Xn) is generated i.i.d. P, then

Pr(Xn ∈ Aε,n)
n→∞−−−→ 1

∗ The sequence X1, , ..., Xn observed us very likely to belong to the typical set.

8

∗ Proof:

Xn = (X1, ..., Xn)⇔ 2−n(H(X)+ε) ≤ P (Xn) ≤ 2−n(H(X)−ε)

⇔ H(X)− ε ≤ − 1

n
logP (Xn) ≤ H(X) + ε

By AEP:

Pr(XN ∈ Aε,n) = Pr

(
H(X)− ε ≤ − 1

n
logP (Xn) ≤ H(X) + ε

)
n→∞−−−→ 1

– Property 2:

∗ Let |Aε,n| denote the number of elements in the typical set Aε,n. Then:

|Aε,n| ≤ 2n(H(X)+ε)

∗ Proof:

1 =
∑
xn∈χn

P (xn)

≥
∑

xn∈Aε,n

P (xn)

≥
∑

xn∈Aε,n

2−n(H(X)+ε)

= 2−n(H(X)+ε)|Aε,n|

– Property 3:

∗ For sufficiently large n, |Aε,n| ≥ (1− ε)2n(H(X)−ε)

∗ Proof: from Property 1, Pr(Xn ∈ Aε,n)
n→∞−−−→ 1

This means for any ε > 0, Pr(Xn ∈ Aε,n) > 1− ε for sufficiently large n:

1− ε < Pr(Xn ∈ Aε,n)

=
∑

xn∈Aε,n

P (xn)

≤
∑

xn∈Aε,n

2−n(H(X)−ε)

= 2−n(H(X)−ε)|Aε,n|

– Summary of the properties:

∗ Suppose generated X1, ..., Xn i.i.d. P. With high probability, the sequence will be
typical, i.e., its probability is close to 2−n(H(X)

∗ If the pmf P assigns non-zero probabilities to the symbols denoted a,b,c etc., the typical
set is essentially the set of sequences whose fraction of a’s is close to P (a), fraction of b’s
is close to p(b), and so on

∗ The number of typical sequences is close to 2n(H(X)

9

2.3 Compression

GOAL: To compress a source producing symbols X1, X2, ... ∈ χ that are i.i.d P.

• To each source sequenceXn, the code assigns a unique binary sequence c(Xn)

• c(Xn) is called the codeword for the source sequence LetXn.

• l(Xn) be the length of the codeword assined to Xn i.e., the number of bits in c(Xn)

• The expected code length is defined as:

E[l(Xn)] =
∑
xn

P (xn)l(xn)

2.3.1 A Naive Compression Code

English: 26 chars /H(X) = 4 bits

• List all the |χ|n possible length n sequences

• Index these as {0, 1, ..., |χ|n − 1} using dlog |χ|ne bits. English - 5n bits

• Expected code length E[l(Xn)] = n log |χ|

• Expected number of bits/symbol: E[l(Xn)]/n = log |χ| English - 5 bits per symbol

How can we do better?

2.3.2 Compression via the Typical Set

• Compression scheme:

– At most 2n(H(X)+ε) ε− typical sequences.

– Index each sequence in Aε,n using dlog 2n(H(X)+ε)e bits. Prefix each of these by a flag bit 0.

Bits/typical seq. = dn(H(X) + ε)e+ 1 ≤ n(H(X) + ε) + 2

– Index each sequence not in Aε,n using dlog |χ|ne bits. Prefix each of these by a flag bit 1.

Bits/non-typical seq. = dn log |χ|e+ 1 ≤ n log |χ|+ 2

• Expected code length:

E[l(Xn)] =
∑
xn

P (xn)l(xn)

=
∑

xn∈Aε,n

P (xn)l(xn) +
∑

xn 6∈Aε,n

P (xn)l(xn)

≤
∑

xn∈Aε,n

P (xn)(n(H(X) + ε) + 2) +
∑

xn 6∈Aε,n

P (xn)(n log |χ|+ 2)

≤ 1 · n(H(X) + ε) + ε · n log |χ|+ 2

 ∑
xn∈Aε,n

P (xn) +
∑

xn 6∈Aε,n

P (xn)


= n(H(X) + ε) + εn log |χ|+ 2

= n(H(X) + ε′)

10

• Fundamental limit of Compression

– For n sufficiently large, there exists a code that maps sequences xn of length n into binary
strings such that the mapping is one-to-one and

E[
1

n
l(Xn)] ≤ H(X) + ε

– In fact the expected length of any uniquely decodable code satisfies

E[
1

n
l(Xn)] ≥ H(X)

– Hence entropy is the fundamental limit of loseless compression

3 Prefix-free codes, Kraft inequality, Loseless source coding

theorem

3.1 Prefix-free codes

• Definition: A code is called prefix-free or instantaneously decodable if no codeword is the prefix
of another.

1. {0, 00, 10} ? No

2. {0, 10, 11} ? Yes

3. {00, 010, 011, 0101, 1} ? No

• Extension Codes and Unique Decodability

– Given a binary code C for alphabet χ, the extension code Cn is the code applied symbol-by-
symbol to strings:

C(x1x2...xn) = C(x1)C(x2)...C(xn)

– The extension code Cn is uniquely decodable if for each binary codeword in it, there is only
one possible source string can produce it

– Prefix-free codes are uniquely decodable, but not all uniquely decodable codes are prefix-free

• We will focus only on designing and analysing prefix-free codes as we want fast encoding and
decoding algorithms.

3.2 Kraft Inequality

• The number of leaves at a level is 2l

•
N∑
i=1

2lmax−li ≤ 2lmax ⇒
N∑
i=1

2−li ≤ 1

• Derived from: Total number of unusable codes at level max ¡ Total number of codes at level max.
While each codeword of length l leads to s set of 2lmax−li unusable leaves at depth 2lmax

• A necessary condition for any prefix-free code with length{l1...lN}

• A sufficient condition, if a set of l length satisfy it, we can always construct a prefix-free code with
these length.

11

3.3 Coding theorem for a random variable

Let X be a random variable taking values in χ with entropy H(X) The expected codeword length L of
any binary prefix-free code for X satisfies

L ≥ H(X)

Proof: Denote the probability of symbols as p1, p2, ... and the corresponding codeword length as
l1, l2, ...

H(X)− L =
∑
i

pi log2(1/pi)−
∑
i

pili

=
∑
i

pi log2(2−li/pi)

=
1

ln 2

∑
i

pi ln2(2−li/pi)

≤(a) 1

ln 2

∑
i

pi
(
2−li/pi − 1

)
=

1

ln 2

(∑
i

2−li −
∑
i

pi

)
≤(b) 1

ln 2
(1− 1) = 0

(a) ln(x) ≤ x− 1
(b) Kraft’s inequality

3.4 Coding theorem for blocks of source symbols

Instead of assigning codeword to each source symbol, we want to assign codeword to blocks of N source
symbols.

Denoting the block by XN := (X1, ..., XN) Hence the Expected length of the code satisfies:

E[l(XN)] ≥ H(XN)
E[l(XN)]

N
≥ H(XN)

N

If X is an iid source, then

H(XN) = NH(X)→ E[l(XN)]

N
≥ H(X)

Remarks:

1. We showed for iid source any prefix-free code has average code length :

E[l(XN)]

N
≥ H(X)

This is also true for any uniquely decodable code, since all we used is Kraft’s inequality which
holds for uniquely decodable codes as well.

12

2. From fundamental limit of compression we have:

E[
1

N
l(XN)] ≤ H(X) + ε

for sufficiently large N

Above together form Shannon’s lossless source coding theorem for iid sources

• You can construct a uniquely decodable code with expected length arbitrarily close to the entropy
(By taking block length N large enough)

• Conversely, you cannot construct a uniquely decodable code with expected length than the source
entropy.

4 Shannon-Fano coding, Huffman coding, Arithmetic coding

4.1 Shannon-Fano Coding

• Expected code length L ≥ H(X)

L =
m∑
i=1

pili ≥
m∑
i=1

pi log2

1

pi

– When can this inequality become an equality?

– How do we pick lengths to make it as tight as possible

• Since li are integers, an obvious way to choose them is:

–

li =

⌈
log2

1

pi

⌉
– Note that x ≤ dxe < x+ 1 Therefore

L =
∑
i

pili <
∑
i

pi

(
log2

1

pi
+ 1

)
= H(X) + 1

L < H(X) + 1

• Verify Shannon-Fano Coding satisfy Kraft inequality∑
i

2li =
∑
i

2
−
⌈
log2

1
pi

⌉
≤
∑
i

2
− log2

1
pi =

∑
i

pi = 1

• Clearly, we can do better by pushing B/D/E to the length two

4.2 Properties of Optimal prefix-free code

1. The lengths are ordered inversely with the probabilities, if pj > pk, then lj ≤ lk

2. The two last probable symbols have the same length and are on neighboring leaves in the binary
tree (i.e. they differ only in the last digit).

13

4.3 Huffman Coding

• An algorithm gives an optimal prefix-free code for a given set of probabilities.

1. Take the two least probable symbols in the alphabet. these two symbols will be given the
longest codewords, which will have equal length, and differ only in the last digit

2. Combine these two symbols into a single symbol, and repeat.

• A source produces symbols from the set {A,B,C,D,E,F} with probabilities {0.05,0.1,0.15,0.2,0.2,0.3}

1. List these symbols in increasing order of their probabilities.

(a) Step 1 (b) Step 2
(c) Step 3

2. Combine the two simple with the smallest probabilities, and form a ”super-symbol” with the
sum of their probabilities.

3. We now have five symbols with probabilities {0.15,0.15,0.2,0.2,0.3}. Again combine the two
symbols with the smallest probabilities...

4. Among the four remaining symbols, D,E have the smallest probabilities, so combine

5. Among the three remaining symbols, the smallest probabilities are 0.3,0.3, so combine them...

6. Finally, combine the remaining two symbols

7. The symbols are the leaves of a tree. The final step is to assign the codewords to the symbols
using the tree.

14

(a) Step 4 (b) Step 5
(c) Step 6

Figure 3: Assign codes

The Huffman code is:

F → 01, E → 11, D → 10, C → 001, B → 0001, A→ 0000

• Properties of the Huffman Code

1. For a source with alphabet of size m, the Huffman algorithm requires m−1 steps of combining
the two smallest probabilities at each stage.

2. The Huffman code for a given source may not be unique: Swapping 0/1, also 3 same prob
can take any two. However, the expected code length should be the same.

• Optimality of Huffman coding: For a given set of probabilities, there is no prefix-free code that
has smaller expected length than the Huffman code.

• Huffman codes are optimal for coding a single random variable X, and have expected code length
that is less than H(X) + 1 But they have some weaknesses:

– To reduce this overhead of up to 1 bit/symbol, we could design a Huffman code for blocks of
k symbols. This would give us an overhead of 1 bit/k symbols, or 1/k bits/symbols.

– But this comes with the expense of increased complexity. For blocks of k symbols, the binary
tree is much larger.

– These defects are addressed by Arithmetic coding, a scalable algorithm whose expected code
length is very close to the source entropy for large sequences. It can also easily deal with
non-iid source like text.

15

4.4 Interval Coding

• Key idea: Each symbol can be represented as an interval inside [0, 1] with length of the interval
equal to the symbol probability.

A source with m symbols with probabilities {p1, ..., pm} is represented using m intervals

[0, p1), [p1, p1 + p2), ..., [
m−1∑
i=1

pi,

m−1∑
i=1

pi + pm).

• Example: To represent interval [0.17, 0.43) convert the end-points to binary and find a binary
interval lies completely inside this interval. say [010, 011] is the interval of [0.25, 0.375] We choose
010 as the codeword for [0.17, 0.43).

• In general, the binary codeword for a symbol with probability p represented by the interval [a, a+p)
can be obtained as follows:

1. Find the largest dyadic interval of the form [j
2l
, j+1

2l
) that lies within [a, a+ p)

2. Take the binary representation of the lower end-point of the dyadic interval as the codeword.

• Code length: With l code bits, the dyadic intervals have length 2l . The dyadic interval has to be
contained within an interval of length p. Hence

2l ≤ p→ dlog2(1/p)e ≤ l

But sometimes we’ll need l = dlog2(1/p)e+ 1
The expected code length can therefore be bounded as

L =
∑
i

pili ≤
∑
i

pi(dlog2(1/pi)e+ 1) < H(X) + 2

• Performance: In terms of expected code length, the analysis above shows that interval codes are
in general not as good as Huffman codes or even Shannon-Fano codes. But interval coding is the
basis for arithmetic coding, which is a powerful technique for long source sequences.

4.5 Arithmetic Coding

• Explain with an example. Consider a source producing symbols X1, X2, ..., Xn which are i.i.d.,
with each Xi taking values in {a, b, c} with probabilities {0.2, 0.45, 0.35}

• Key ideas:

– Each length n string (x1, ..., xn) is represented by a disjoint interval with length equal to the
probability of the string.

∗ E.g. for n = 2, X1 = b,X2 = c corresponds to the probability of length 0.45 ∗ 0.35 =
0.1575 and X1 = b,X2 = a of length 0.45 ∗ 0.2 = 0.09.

– The interval for (X1 = x,X2 = y) is a sub interval of the interval for X1 = x

∗ E.g. X1 = b is the interval [0.2, 0.65) and (X1 = b,X2 = c) is the subinterval of length
0.1575 within [0.2, 0.65) To calculate, we rewrite the interval as {0, 0.2, 0.65, 0.1} as the
order of a,b,c.

16

∗ The subinterval becomes 0.2+(0.65−0.2)∗0.65→ 0.2+(0.65−0.2)∗1 That is [0.4925, 0.65)
Also we can verify that 0.65− 0.4925 = 0.1575

– Similarly, for any symbols x, y, z, P (X1 = x,X2 = y,X3 = z) is a sub interval of P (X1 =
x,X2 = y), and so on.

• Decoding: Using binary codeword to sequentially zoom in to the interval, decoding symbols as
you go along.

• Expected code length:
Arithmetic coding can be performed in any sequence of length n, so that any sequence x1, ..., xn
can be represented by an interval of length p(x1, ..., xn), which gives a binary codeword of length
at most dlog2

1
p(x1,...,xn)

e+ 1.
Therefore the expected code length for length n sequences is bounded as:

Ln =
∑
Xn

pxn lxn ≤
∑
xn

pxn(log2 (1/p(x1, ..., xn)) + 2) = H(Xn) + 2

Therefore the expected code length per symbol is

Ln
n
<
H(Xn)

n
+

2

n
= H(X) +

2

n
,

Where the last equality hold for iid PX

4.6 Arithmetic coding for non-iid sources

• Consider a source that produces symbols in alphabet {a1, ..., am} with a known distribution

P (x1)p(x2|x1)...P (xn|x1, ..., xn−1)

The arithmetic coding algorithm can be easily extended to such sources. As before, consider the
source with alphabet {a, b, c} with probabilities {0.2, 0.45, 0.35}.
Suppose that three conditional distributions P (X2|X1 = a), P (X2|X1 = b), P (X2|X1 = c) and
say

P (X2 = a|X1 = b) = 0.5, P (X2 = b|X1 = b) = 0.3, P (X2 = c|X1 = b) = 0.2

We do the same thing as before, just change the probability using the conditional probability
accordingly.

• Coding Algorithm:

– Let source alphabet A be {a1, ..., am}
– We are given a source sequence x1, x2, ..., xn where each xi ∈ A
– Both encoder and decoder know the conditional distributions PX1 , PX2|X1 , ..., PXn|X1,...,Xn−1 .

– The encoding algorithm computes the interval using the following lower and upper cumulative
probabilities. For i = 1, ...m and for k − 1, ..., n we define

Lk(ai|x1, ..., xk−1) =
i−1∑
i′

P (Xk = ai′ |X1 = x1, ..., Xk−1 = xk−1)

Uk(ai|x1, ..., xk−1) =
i∑
i′

P (Xk = ai′ |X1 = x1, ..., Xk−1 = xk−1)

17

• Finite precision issues: The arithmetic encoding algorithm above assumes an infinite precision
computer:

– As n grows, the length of the interval corresponding to a sequence (x1, ..., xn) shrinks

– Hence the number of digits needed to accurately store the values lo and hi grows with n.

Summary:

1. Arithmetic coding can achieve compression very close to the source entropy, with complexity
scaling linearly with the length of the sequence.

2. It does require you to know the conditional distribution. But this approach fits well with ma-
chine learning techniques that can mine huge quantities of text/speech/video data to build good
probabilistic models.

3. Note that the assumed distribution of the source doesn’t need to be true one, it only needs to be
the same at both encoder and decoder.

4. Arithmetic coding works even when you generate the source conditional distribution on the fly,
based on what has been observed so far. Given the generating rule, the decoder will also generate
required conditional distributions as it reconstructs the sequence.

5 Relative Entropy Mutual Information

5.1 Relative Entropy

5.1.1 Define

The Relative Entropy or the Kullback-Leibler(KL) divergence between two pmfs P and Q is:

D(P ||Q) =
∑
x∈χ

P (x) log
P (x)

Q(x)

• P and Q are defined on the same alphabet χ

• Measure of distance between distributions P and Q

• Not a true distance. For example: D(P ||Q) 6= D(Q||P)

• if P = Q Then D(P ||Q) = 0

• Example: If P = Bern(p) and Q = Bern(q) for p, q ∈ [0, , 1],

D(P ||Q) = p log
p

q
+ (1− p) log

1− p
1− q

• Relative Entropy is always non-negative:

D(P ||Q) ≥ 0With equality if and only if P = Q

18

Proof: Using log2 a = ln a
ln 2

−D(P ||Q) =
1

ln 2

∑
x∈χ

P (x) ln
Q(x)

P (x)

≤ 1

ln 2

∑
x∈χ

P (x) (fracQ(x)P (x)) =
1

ln 2
(1− 1) = 0

Again, we use our favorite inequality lnx ≤ (x− 1) with equality iff x=1

• We look at applications in compression and hypothesis testing.

5.1.2 Redundancy in Source Coding

Often the True distribution of the source is unknown, and we have to work with estimated source
distribution for compression.

• Suppose true pmf of a rv is P = {p1, ..., pm}, estimated pmf is P̂ = {p̂1, ..., p̂m}

• P̂ is used to design a compression code whose code length li satisfy

li = log(1/p̂i) for i = 1, ...,m.

The code is optimal for the distribution p̂

• How far are we from the optimal of the true distribution? The Average code Length:

L =
∑
i

pili =
∑
i

pi log
1

p̂i

=
∑
i

pi log
pi
pip̂i

=
∑
i

pi log
1

pi
+
∑
i

pi log
pi
p̂i

= H(P) +D(P ||p̂i) bits/symbol

• Therefore D(P ||p̂i) is the Price you pay in bits/symbol –Redundancy– for designing the code with
estimated distribution rather than true distribution.

• Example: Suppose we know that the true distribution P is one from a set of distributions P .
For a ternary source that came from the set of distributions of the form P = {γ, 0.2, 0.8 − γ}for
γ ∈ (0, 0.8).

Then design a code using a distribution P̂ that minimizes the worst-case redundancy over this
class of distribution P , i.e.,

Choose P̂ to minimize max
P∈P

D(P ||P̂)

R∗ = min
P̂

max
P∈P

D(P ||P̂)

is called minimax redundancy

19

5.1.3 Hypothesis Testing

We have data X1, ..., Xn, and the knowledge that one of the following is true.

H0 : X1, ..., Xn ∼ i.i.d. P

H1 : X1, ..., Xn ∼ i.i.d. Q

Where H0 is called the null hypothesis

Some definitions

• A decision rule or a test is a function that maps the data (X1, ..., Xn) to a binary decision (0 for
H0, 1 for H1).

• With any decision rule, two kinds of errors can be made:
Type I error: When H0 is true, but the decision rule chooses H1.
Type II error: When H1 is true, but the decision rule chooses H0.

• Given the data X1, ..., Xn, the likelihood ratio(LR) is defined as

Q(X1, ...Xn)

P (X1, ...Xn)

and the normalized log-likelihood ratio(LLR) is

1

n
log

Q(X1, ...Xn)

P (X1, ...Xn)

• The optimum decision rule is a likelihood-ratio thresholding rule,i.e.,
For some threshold T:

Choose H1 if Q(X1,...Xn)
P (X1,...Xn)

≤ T : otherwise choose H0

Equivalently for LLR
Choose H1 if 1

n
log Q(X1,...Xn)

P (X1,...Xn)
≤ t: otherwise choose H0

The intuition is that Q need to comparably larger than P to be valid.
Note that both tests are equivalent by setting T = 2nt

• Increase threshold t, the condition to choose H1 becomes more stringent; Hence type-I error prob.
increases, type-II error prob. decreases.

• If we have the optimality of thresholding tests, then:
If a thresholding test has probability of Type-I error α and prob. of type-II error β. Then any
test that lower α must increase β

Examples: Under H0 : X1, ..., Xn ∼ i.i.d. Bern(p); H1 : X1, ..., Xn ∼ i.i.d. Bern(q) (For Bern, 1=p or
q, 0= (1-p) or (1-q)). Denote number of ones as kn, we have:

LLR(X1, ...Xn) =
1

n
log

Q(X1, ...Xn)

P (X1, ...Xn)

=
1

n
log

qkn(1− q)n−kn
pkn(1− p)n−kn

=
kn
n

log
q

p
+

(
1− kn

n

)
log

1− q
1− p

Question: What is the behaviour of the LLR as n gets large when: a) H0 is true; b) H1 is true

20

• H0: Xi ∼ i.i.d. Bern(p)

kn
n
→ p LLR→ p log

q

p
+ (1− p) log

1− q
1− p

= −D(P ||Q)

– When the true distribution is P, the likelihood of the data under the Q distribution(Wrong)
(for large n) is

Q(X1, ...Xn) = P (X1, ...Xn)2−nD(P ||Q)

• H1: Xi ∼ i.i.d. Bern(q)

kn
n
→ q LLR→ q log

q

p
+ (1− q) log

1− q
1− p

= D(Q||P)

– When the true distribution is q, the likelihood of the data under the P distribution(Wrong)
(for large n) is

P (X1, ...Xn) = Q(X1, ...Xn)2−nD(Q||P)

• The likelihood of the data under the wrong distribution is exponentially smaller than the
likelihood under the true distribution.

• The exponent is controlled by the relative entropy, but note the asymmetry between D(P ||Q) and
(Q||P)

5.2 Mutual Information

• Consider two random variables X and Y with joint pmf PXY . The mutual information between X
and Y is defined as

I(X;Y) = H(X)−H(X|Y) bits

• Reduction in the uncertainty of X when you observe Y

• Property 1

I(X;Y) = H(X)−H(Y)−H(X, Y)

= H(X)+H(Y)− (H(X) +H(Y |X))

= H(Y)−H(Y |X)

I(X;Y) = H(X)−H(X|Y)

= H(Y)−H(Y |X)

X says as much about Y as Y says about X

21

– I(X;Y) when X and Y are independent: 0 - No reduction in uncertainty

– I(X;Y) when Y=X: H(X) - Full reduction in uncertainty

– I(X:Y) when Y=f(X): H(X) - H(X—f(x))

• Property 2
I(X;Y) = D(PXY ||PXPY)

The relative entropy between the joint pmf and the product of the marginals
Proof:

I(X;Y) = H(X)−H(X|Y)

= −
∑
x

PX(x) logPX(x) +
∑
x,y

logPX|Y (x|y)

=
∑
x,y

log
PX|Y (x|y)

PX(x)

=
∑
x,y

log
PX|Y (x|y)PY (y)

PX(x)PY (y)

= D(PXY ||PXPY)

• Property 3
I(X;Y) ≥ 0

→ H(X|Y) ≤ H(X), H(Y |X) ≤ H(Y)

Knowing another random variable Y can only reduce the average uncertainty in X

Proof: from Property 2 and D(P ||Q) ≥ 0

5.2.1 Conditional Mutual Information

Given X, Y, Z jointly distributed according to PXY Z , the conditional mutual information I(X : Y |Z) is
defined as:

I([X : Y]|Z) := H(X|Z)−H(X|Y, Z).

5.2.2 Chain Rule

For any sequence of random variables: X1, X2, ..., Xn jointly distributed with Y,

I(X1, X2, ..., Xm;Y) =
n∑
i=1

I(Xi;Y |Xi−1, Xi−2, ..., X1),

By applying the conditional mutual information rule, for each i:

I(Xi;Y |Xi−1, Xi−2, ..., X1) = H(Xi|Xi−1, Xi−2, ..., X1)−H(Xi|Y,Xi−1, Xi−2, ..., X1)

22

6 Discrete Channels and Channel Capacity

6.1 Binary Channel

6.1.1 Binary Symmetric Channel(BSC)

From Fig 4,

P (Y = 0|X = 0) = 1− p, P (Y = 1|X = 1) = 1− p
P (Y = 1|X = 0) = p, P (Y = 1|X = 0) = p

• p is the ”Crossover probability”; the channel is BSC(p)

• We need to find a good design of error-correcting codes for the BSC.

Figure 4: Binary Symmetric Channel

Example: Repetition Code

• For a BSC of p=0.1, use (1,3) repetition code:

Figure 5: (1,3)Repetition coding for BSC

• Data bit wrongly decoded if channel flips two or more bits

• Probability of decoding error:
(

3
2

)
(0.1)2(0.9) +

(
3
3

)
(0.1)3 = 0.028

• Data rate = 1
3

bits/transmission If we apply a (1,9) or even longer repetition code:

• Probability of error = 0.0009 or goes to 0, but...

• Data rate = 1
9

or 1
n
, which also goes to 0

23

6.2 Discrete Memory less Channel

• A DMC is a system consisting of an input alphabet X , output alphabet Y and a set of transition
probabilities

PY |X(b|a) = Pr(Y = b|X = a) for all a ∈ X and b ∈ Y

• Memoryless means that the channel acts independently on each input. For each time instant
k = 1, 2, ...

P r(Yk = y|Xk = x,Xk−1, ..., X1, Yk−1, ..., Y1) = PY |X(y|x)

Given all the past, the current output depends only on the current input

• Example:Binary Symmetric Channel

– A DMC can be described by a transition probability matrix, e.g.

• Example: Binary Erasure Channel (BEC):

– Erasure can model packet loss in networks

– When the demodulator thinks the output symbol is too noisy, it can declare an erasure

• Noisy Keyboard Channel: A useful toy example

– Input alphabet of 26

24

– Each channel input is either received unchanged or transformed into next symbol:

P (Y = a|X = a) = P (Y = b|X = a) =
1

2
,

P (Y = b|X = b) = P (Y = c|X = b) =
1

2
,

...

P (Y = z|X = z) = P (Y = a|X = z) =
1

2

To achieve error-free over this channel:

– Use only symbols a,c,e,...,y

– Noiselessly convey one of 13 symbols per transmission

– =⇒ Transmission rate = log 13 bits/transmission

– This is in fact the maximum possible rate

For a general DMC:

• Construct a set of input sequences which have Non-Intersecting sets of output sequences with
high probability

• These input sequences are non-confusable as to the inputs a,c,e... in the keyboard channel.

6.3 Channel Capacity

The channel capacity of a discrete memoryless channel is defined as

C = max
PX

I(X;Y)

25

• PY |X is defined by the DMC. Each input distribution PX yields a differeent joint distribution on
(X,Y) given by PXPY |X

• C is the maximum transmission rate over the DMC for arbitrarily small probability of error

Example 1: Noiseless Binary Channel

I(X;Y) = H(X)−H(X|Y) = H(X) (H(X|Y) = 0)

• Channel capacity is maximize mutual information, so here maximize H(X) → PX = (1
2
, 1

2
)

• Therefore
C = max

PX
I(X;Y) = max

PX
H(X) = 1bit/transmission

Example 2: BSC

I(X;Y) = H(Y)−H(Y |X)

= H(Y)−
∑
x∈0,1

PX(x)H(Y |X = x)

= H(Y)−
∑
x∈0,1

PX(x)H2(P)

= H(Y)−H2(P)

≤ 1−H2(P)

• H(Y |X = x) = H2(P) since H(Y |X = 0) = H((Y |X = 1) = H{1− p, p} = H{p, 1− p}

• Maximum value of H(Y) = 1 is attained when PX = (0.5, 0.5)→ C = 1−H2(p)

• For p = 0.1, C = 0.531 bits/transmission

Example 3 : Noisy Keyboard Channel

I(X;Y) = H(Y)−H(Y |X) = H(Y)− 1 ≤ log(26)− 1 = log(13)

• what PX maximises H(Y)? We have two choices!

26

1. PX = (1/26, ..., 1/26)

2. PX = (1/13, 0, ..., 1/13, 0) [We used before]

3. Both yield PY = (1/26, 1/26, ..., 1/26)

C = max
PX

I(X;Y) = log(26)− 1 = log(13) bits/transmission

7 Channel Coding Theorem

Definition of a Channel Code

• We use the channel n times to transmit k information bits.

• Each sequence of k-bits as indexing a “message” W in the set {1, ..., 2k}
k bits ⇔ 2k messages

• The rate R of the code is R = k
n

bits/transmission. Then the total number of messages is 2k = 2nR.

An (n,k) channel code of rate R for the channel (X ,Y , PY |X) consists of:

1. A set of messages: {1, ..., 2k = 2nR}

2. an encoding function Xn: {1, ..., 2k} → X n that assigns a codeword to each message. The set of
codewords {Xn(1), ..., Xn(2nR)} is called the codebook

3. A decoding function g: Yn → {1, ..., 2nR}, which produces a guess of the transmitted message for
each received vector

7.1 Preview of Channel Coding Theorem

For BSC(0.1):

27

• For input sequence Xn, the output Y n is generated as

Yi = Xi ⊕ Ei for i = 1, ..., n

• Note:
Xi ⊕ 0 = Xi Xi ⊕ 1 = X̄i

• E1, ..., En i.i.d ∼ Bern(0.1) is the sequence of errors introduced by the channel

• For large n, the number of ones in (E1, ..., En) ' 0.1n (AEP)

How big is the set of Y n sequences “typical” with any given Xn?

2nH2(0.1)

• the high-probability set of typical Y n Sequences for a given Xn(1) is much smaller than 2n

• pick Xn(2) far enough away from Xn(1).

• Then the typical set of Y n’s for Xn(2) is non-intersecting with the typical set for Xn(1). This
could again carried out for Xn(3)....

• Number of distinct messages we can transmit = max.number of non-intersecting sets .

2nR ' 2n

2nH2(0.1)
⇒ Rate R ' 1−H20.1) = Channel Capacity

7.2 General DMC

Fix an input pmf PX . Together with the channel PY |X , this gives

PXY = PXPY |XPY =
∑
X

PXPY |X

If Xn(1), Xn(2), ..., Xn(2nR) are generated i.i.d ∼ PX , then:

• When Xn(j) is transmitted, the set of highly likely Yn’s has approximately 2nH(Y |X) sequences for
each j ∈ {1, ..., 2nR}

• These sets are non-intersecting with high probability

28

7.3 Joint typicality

Example: Let(Xn, Y n) be drawn i.i.d. according to the following joint pmf:

Pr(Xn = xn, Y n = yn) =
n∏
i−1

PXY (xi, yi), for all (xn, yn).

For large n,

• Xn and Y n will each have approximately 50% ones.

• The number of (Xi, Yi) pairs that are (0, 0), (0, 1), (1, 0), (1, 1) will be close to .4n, .1n, .1n, .4n.

7.4 Joint Typical Set

The set Aε,n pf jointly typical sequences {(xn, yn)} with respect to a joint pmf PXY is defined as

Aε,n = {(xn, yn) ∈ X n × Yn such that

| − 1

n
logPX(xn)−H(X)| < ε

| − 1

n
logPY (yn)−H(Y)| < ε

| − 1

n
logPXY (xn, yn)−H(X, Y)| < ε}

Where PXY (xn, yn) =
∏N

i=1 PXY (Xi, yi)

7.5 Joint AEP

AEP: Asymptotic equipartition property
Let (Xn, Yn) be a pair of sequences drawn i.i.d. according to PXY , i.e.,

Pr(Xn = xn, Y n = yn) =
n∏
i=1

PXY (Xi, yi), for all (xn, yn)

Then for any ε > 0:

29

1. Pr((Xn, Y n) ∈ Aε,n)→ 1 as n→∞

2. |Aε,n| ≤ 2n(H(X,Y)+ε) (Size of typical set)

3. If (X̃n, Ỹ n) are a pair of sequences drawn i.i.d according to PXPY [i.e. X̃n, Ỹ n are independent
with the same marginals as PXY], then

Pr((X̃n, Ỹ n) ∈ Aε,n) ≤ 2−n(I(X;Y)−3ε)

7.6 Proof of AEP

7.6.1 Claim 1:

When (Xn, Yn) drawn i.i.d. according to PXY ,

Pr

(
| − 1

n
logPX(xn)−H(X)| < ε

)
→ 1 as n→∞

Pr

(
| − 1

n
logPY (yn)−H(Y)| < ε

)
→ 1 as n→∞

Pr

(
| − 1

n
logPXY (xn, yn)−H(X, Y)| < ε

)
→ 1 as n→∞

The proof of the above is very similar to that of the AEP in Handout 2 and follows from the WLLN.
Thus Pr((Xn, Y n) ∈ Aε,n)→ 1 as n→∞

7.6.2 Claim 2:

We have

1 =
∑
xn,yn

PXY (xn, yn)

≥
∑

(xn,yn)∈Aε,n

PXY (xn, yn)

≥
∑

(xn,yn)∈Aε,n

2−n(H(X,Y)+ε)

= 2−n(H(X,Y)+ε)|Aε,n|

Hence |Aε,n| ≤ 2n(H(X,Y)+ε).

7.6.3 Claim 3:

If (X̃n, Ỹ n) are independent but have the same marginals as Xn and Y n, then

Pr((X̃n, Ỹ n) ∈ Aε,n) =
∑

(xn,yn)∈Aε,n

PX(xn)PY (yn)

≤ 2n(H(X,Y)+ε) · 2−n(H(X)−ε) · 2−n(H(Y)−ε)

= 2−n(I(X;Y)−3ε)

30

7.7 The probability of Error of a code

The maximal probability of error of the code is defined as

max
j∈{1,...,2nR}

Pr(Ŵ 6= j|W = j)

The average probability of error of the code is

1

2nR

2nR∑
j=1

Pr(Ŵ 6= j|W = j)

W and Ŵ denote the transmitted, and decoded messages respectively.

7.8 The Channel Coding Theorem

For a DMC with capacity C, all rates less than C are achievable..

1. Fix R < C and pick any ε > 0. Then, for all sufficiently large n there exists a length-n code of
rate R with maximal probability of error less than ε

2. Conversely, any sequence of length-n codes of rate R with average/maximal probability of error

P
(n)
e → 0 as n→∞ must have R ≤ C.

7.8.1 Proof of the coding theorem

Prove the achievability of all rates R < C. (the first part).
Codebook Generation:

• Fix rate R < C and input pmf PX . We generate each of the 2nR codewords independently
according to the distribution

Pr(Xn(k) = (x1, ..., xn)) =
n∏
i=1

PX(xi) for k = 1, ..., 2nR.

31

• Codebook B can be interpreted as a 2nR × n matrix:

B =


X1(1) X2(1) · · · Xn(1)
X1(2) X2(2) · · · Xn(2)

...
...

. . .
...

X1(2nR) X2(2nR) · · · Xn(2nR)

 =


Length n codeword - Message 1
Length n codeword - Message 2

...
Length n codeword - Message 2nR


• Each entry in the matrix is chosen i.i.d according to PX . The probability that we generate a

particular codebook xn(1), ..., xN(2nR) is
∏2nR

w=1

∏n
i=1 PX(xi(w))

7.8.2 Encoding

1. A codebook B is generated as described previously. The codebook is revealed to both sender and
receiver, who also know the channel transition matrix PY |X .

2. To transmit message W , the encoder sends Xn(W) over the channel

3. The receiver receives a sequence Y n generated according to

n∏
i=1

PY |X(Yi|Xi(W)) (1)

4. From Y n, the receiver has to guess which message was sent.

• Assuming a uniform prior on the messages, the optimal decoding rule is max-likelihood
decoding: decode the message Ŵ that maximises Eq. 1

• But joint typical decoding is used for easier analyze.

7.8.3 Joint Typicality Decoder

The decoder declares that the message Ŵ was sent if both the following conditions are satisfied:

• (Xn(Ŵ), Y n) is jointly typical with respect to PXPY |X .

• There exists no other message W ′ 6= Ŵ such that (Xn(Ŵ), Y n) is jointly typical.

If no such Ŵ is found or there is more than one such, an error is declared.

7.8.4 Analyze the probability of error

• The average probability of error for a given codebook B is

1

2nR

2nR∑
w=1

Pr(Ŵ 6= w|B,W = w) (2)

32

• Analysing this for a specific codebook is hard. So the average of Eq. 2 over all codebooks is
calculated:

P̄e =
1

2nR

∑
B

2nR∑
w=1

Pr(Ŵ 6= w|B,W = w)Pr(B).

P̄e =
1

2nR

2nR∑
w=1

∑
B

Pr(Ŵ 6= w|B,W = w)Pr(B).

• Recall Pr(B) is the probability corresponding to picking each symbol of B i.i.d. ∼ PX .

• Since all the messages are equally likely, we can assume that the first message is the transmitted
one. Thus

P̄e =
∑
B

Pr(Ŵ 6= 1|B,W = 1)Pr(B).

7.8.5 Error Analysis

Assuming W=1 was transmitted, there are two sources of error:

1. Xn(1) is not jointly typical with the output Y n.

2. Xn(k) is jointly typical with the output Y n for some k 6= 1.

• Let Ek be the event that Xn(k) and Y n are jointly typical.

• Then:

P̄e =P (EC
1 ∪ E2 ∪ ... ∪ E2nR)

≤P (EC
1) + P (E2) + ...+ P (E2nR)

(Union Bound)

1) Showing P (EC
1) is small:

• Xn(1) i.i.d. ∼ PX .

• The channel generates Y n symbols by symbol according to PY |X(Yi|Xi(1)) for i = 1, ..., n

• Therefore Xn(1), Y n is generated i.i.d ∼ PXPY |X

• Joint AEP implies that P (EC
1) ≤ ε for sufficiently large n

2) Showing P (E2) + ...+ P (E2nR) is small:
For k 6= 1:

• Xn(k) was generated independently from Xn(1), and Y n is obtained by passing Xn(1) through
the channel.

• Hence Xn(k) and Y n are independent for k 6= 1.

• Further, Xn(k) is i.i.d. ∼ PX , and Y n is i.i.d. ∼ PY .

33

• From the Joint AEP, the probability that Xn(k) and Yn are jointly typical according to PXY is
≤ 2−n(I(X;Y)−3ε)

⇒ P (E2) + ...+ P (E2nR) ≤ (2nR − 1)2−n(I(X;Y)−3ε)

Putting the two parts together:

P̄e ≤ P (EC
1) + P (E2) + ...+ P (E2nR)

≤ ε+ 2nR2−n(I(X;Y)−3ε)

≤(a) ε+ ε

(a) is true when R < I(X;Y)− 3ε and n is sufficiently large.

Therefore combining 1) and 2):

P̄e =
1

2nR

2nR∑
w=1

∑
B

Pr(Ŵ 6= w|B,W = w)Pr(B) ≤ 2ε

Final Steps:
1. Choose PX to be one that maximises I(X;Y).

2. Get rid of average over codebooks: As P̄e ≤ 2ε, there exists at least one codebook B∗ with

Pe(B∗) =
1

2nR

2nR∑
w=1

Pr(Ŵ 6= w|B∗,W = w)Pr(B) ≤ 2ε

3. Throw away the worst half of the codewords in B∗: For B∗, the probability of error averaged over
all messages is ≤ 2ε. Thus the probability of error must be ≤ 4ε for at least halt the messages.

7.8.6 The Final Code

• The number of codewords in this improved version of B∗ is 2nR/2. Its rate is

log(2nR/2)

n
= R− 1

n
.

• Since R is any rate less than C − 3ε, we have shown the existence of a code with rate

C − 4ε− 1

n
whose maximal probability of error satisfies

max
W

Pr(Ŵ 6= w|W = w) ≤ 4ε

• Since ε > 0 is an arbitrary constant, we have shown that for any R < C, for sufficiently large n
there exists a code with arbitrarily small maximal error probability.

• This proves the first part of channel coding theorem, the converse would be proved in next chapter.

7.9 Summary

• Allow an arbitrarily small but non-zero probability of error

• Use the channel many times in succession, so that the law of large numbers comes into effect

• Random Coding: Calculate the average probability of error over a random choice of codebooks,
which can then be used to show the existence of at least one good code

34

8 Data Processing, Fano’s Inequality

8.1 Data Processing and Mutual Information

Random variables, X,Y,Z are said to form a Markov chain if their joint pmf can be written as

PXY Z = PXPY |XPZ|Y

In other words, the conditional distribution of Z given (X,Y) depends only on Y, i.e., PZ|XY = PZ|Y .
Example of Markov chains:

1. Y is a noisy version of X, and Z = f(Y) is an estimator of X based only on Y

2. The output of the X → Y channel is fed into the Y → Z channel.

Data-Processing Inequality
If X-Y-Z form a Markov chain, then I(X;Y) ≥ I(X;Z).

Processing the data Y cannot increase the information about X

8.2 Fano’s Inequality

• We want to estimate X by observing a correlated random variable Y

• The probability of error of an estimator X̂ = g(Y) is Pe = Pr(X̂ 6= X)

• Given X takes values in the set X , we wish to bound Pe

Fano’s Inequality
For any estimator X̂ such that X − Y − X̂, the probability of error Pe = Pr(X̂ 6= X) satisfies

1 + Pe log |X | ≥ H(X|X̂) ≥ H(X|Y) or Pe ≥
H(X|Y)− 1

log |X |

No matter how good the estimator is, the probability of error can not be lower than some value

35

8.2.1 Proof of Fano

• Define an error random variable

E =

{
1 if X̂ 6= X

0 if X̂ = X

• Use chain rule to expand H(E,X|X̂) in two ways:

H(E,X|X̂) = H(X|X̂) +H(E|X, X̂) (3)

= H(E|X̂) +H(X|X̂, E)

• Claims:

1. H(E|X, X̂) = 0. (E is a function of ...)

2. H(E|X̂) ≤ H(E) = H2(Pe). (Conditioning can only reduce entropy)

3. H(X|X̂, E) ≤ Pe log |X | because

H(X|X̂, E) = Pr(E = 0)H(X|X̂, E = 0) + Pr(E = 1)H(X|X̂, E = 1)

≤ (1− Pe)0 + Pe log |X |
Use these claims in Eq.3

H(X|X̂) = H(E|X̂) +H(X|X̂, E) ≤ H2(Pe) + Pe log |X |

Note that H2(Pe) ≤ 1. Therefore

H(X|X̂) ≤ 1 + Pe log |X |.

For the other side, the data-processing inequality given:

I(X;Y) = H(X)−H(X|Y) ≥ I(X; X̂) = H(X)−H(X|X̂)

Thus H(X|X̂) ≥ H(X|Y).

8.2.2 Apply Fano’s inequality into Channel Coding

• Consider a length n, rate R channel code, i.e., 2nR codewords

• Ŵ is a guess of W based on Y n

• W uniformly distributed in {1, 2, ..., 3nR}

• Pe = Pr(Ŵ 6= W) = 1
2nR

∑2nR

k=1 Pr(Ŵ 6= k|W = k)

• Apply Fano’s Inequality:

H(W |Ŵ) ≤ 1 + Pe log |W | ≤ 1 + Pe log 2nR = 1 + PenR

Above will be used to show that any sequence of (2nR, n) codes with Pe → 0 must have R ≤ C.

36

8.2.3 Lemma/Helping theorem for channel coding converse

Let Y n be the result of passing a sequence Xn through a DMC of channel capacity C. Then

I(Xn;Y n) ≤ nC

Regardless of the distribution of Xn. Proof:

I(Xn;Y n) = H(Y n)−H(Y n|Xn)

= H(Y n)−
n∑
i=1

H(Yi|Yi−1, ..., Y1, X
n)

=(a) H(Y n)−
n∑
i=1

H(Yi|Xi)

≤(b)

n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi)

=
n∑
i=1

I(Xi;Yi)

≤(c) nC.

Justification for step (a)-(c):

(a) The channel is memoryless. This meas that given X − i, Yi is conditionally independent of every-
thing else.

(b)

H(Y n) = H(Y1) +H(Y2|Y1) + ...+H(Yn|Yn−1, ..., Y1)

≤ H(Y1) +H(Y2) + ...+H(Yn)

as conditioning can only reduce entropy

(c) From the definition of capacity, C is the maximum of I(X;Y) over all joint pmfs over (X,Y) where
PY |X is fixed by the channel.

8.3 Prove of Channel Coding Converse

Consider any length n, rate R channel code, i.e., (2nR, n) channel code with average probability of error
Pe. We have:

nR =(a)H(W)

=(b)H(W |Ŵ) + I(W : Ŵ)

≤(c)1 + PenR + I(W ; Ŵ)

≤(d)1 + PenR + I(Xn;Y n)

≤(e)1 + PenR + nC.

This implies:

Pe ≥ 1− C

R
− 1

nR

37

Thus, unless R ≤ C, Pe is bounded away from 0 as n→∞

n→∞ Pe ≥ 1− c

R

If R ≥ C, error would be large.
Justification for steps (a)-(e):

(a) W is uniform over {1, ..., 2nR}

(b) I(W ; Ŵ) = H(W)−H(W |Ŵ)

(c) Fano applied to H(W |Ŵ) See Chapter 6

(d) Data processing inequality applied to W −Xn − Y n − Ŵ

(e) From previous Lemma

8.4 Summary

C is a sharp threshold:

• For all rates R < C, there exists a sequence of (2nR, n) codes whose Pe → 0

• For rates R > C, no sequence of (2nR, n) codes whose Pe → 0

However, channel coding theorem doe not give practical technique to communicate reliably at any rate
R < C

1. Joint typical decoding is too complex to be feasible

2. An 2nR× n codebook is too large to store

In the next chapters, compact codebook representation and fast encoding/decoding algorithms are
introduced.

9 Information theory with continuous RVs

9.1 The Additive White Gaussian Noise(AWGN) Channel

Y (t) = X(t) +N(t)

Assumptions on the channel:

38

1. Input X(t) is power-limited to P :

⇒ Average energy over time T must be ≤ P for large T

• Battery power is limited; may also need to limit interference with other users

2. X(t) is band-limited to W :

⇒ Fourier Transform of X(t) must be zero outside [−W,W]

• B.W. is a scarce resource

3. Noise N(t) is a random process assumed to be white Gaussian

• Good approximation to sum of many independent zero-mean random variables(Central Limit
Theorem) (Know mean and variance but not exact noise)

• Gaussian noise is in a sense the ‘worst’ among noise rvs of a given variance

• Easy to analyse

By Shannon-Nyquist sampling theorem, it can be shown that the continuous-time channel

Y (t) = X(t) +N(t)

with power constraint P and bandwidth constraint W is equivalent to the following discrete-time channel
Discrete-time AWGN Channel:

Yk = Xk + Zk, k = 1, 2, ...,

• Average power constraint P on input ⇒

1

n

n∑
k=1

X2
k ≤ P

• Zk are i.i.d. Gaussian with mean 0, variance σ2 (denoted by N (0, σ2))

• Need to compute the capacity of this channel in bits/transmission

9.2 Information Theory for Continuous Alphabets

• In the AWGN channel, Xk, Zk, Yk are all real-valued random variables

• Define entropy for rvs in a continuous space, Differential Entropy

h(X) =

∫ ∞
−∞

fX(u) log
1

fX(u)
du

39

9.2.1 Differential Entropy

Example: Let X be uniformly distributed in the interval [0, a]. Its differential entropy is:

h(X) =

∫ a

0

fX(u) log
1

fX(u)
du =

∫ a

0

1

a
log a du = log a

• For a = 1, h(X) = 0

• For 0 < a < 1, h(X) is negative!

• For any random variable X, we may interpret h(X) as uncertainty relative to that of a Unif [0, 1]
random variable. Unif [0, 1] rv is a baseline which has 0 differential entropy.

Example: h(X) for a Gaussian rv X ∼ N (µ, σ2):

φ(x) =
1√

2πσ2
e
−(x−µ)2

2σ2

h(X) =−
∫
φ(x)

lnφ(x)

ln 2
dx

=− 1

ln 2

∫
φ(x)

[
−(x− µ)2

2σ2
− ln
√

2πσ2

]
dx

=
1

ln 2

[
V ar(X)

2σ2
+

1

2
ln 2πσ2

]
=

1

ln 2

[
1

2
+

1

2
ln 2πσ2

]
=

1

2
log 2πeσ2

9.2.2 Differential Entropy of Multiple RVs

The joint differential entropy of (X, Y) with joint density fXY is

h(X, Y) =

∫
fXY (u, v) log

1

fXY (u, v)
du dv

The conditional differential entropy of X given Y is

h(X|Y) =

∫
fXY (u, v) log

1

fX|Y (u|v)
du dv

Joint differential entropy chain rule:

h(X, Y) = h(X) + h(Y |X)

Mutual information is similar to the discrete case:

I(X;Y) = h(X)− h(X|Y) = h(X) + h(Y)− h(X, Y) = h(Y)− h(Y |X)

Relative entropy between two densities f and g is

D(f ||g) =

∫
f(u) log

f(u)

g(u)
du

40

• D(f ||g) ≥ 0 still holds.

• Since I(X;Y) = D(fXY ||fXfY), mutual information is always non-negative

• Chain rules for differential entropy and mutual information hold, and are analogous to the discrete
case.

To summarize, the main difference is that differential entropy can be negative and should be inter-
preted as uncertainty relative to a baseline, but other quantities and properties should have the usual
interpretations.

9.3 Capacity of the discrete-time AWGN Channel

Yk = Xk + Zk, k = 1, 2, ... (4)

Input power constraint is
1

n

n∑
k=1

X2
k ≤ P

Zk i.i.d. Gaussian ∼ N (0, σ2)

• The capacity of the AWGN channel with power constraint P is C = max I(X;Y), where the
maximum is over all inputs pdfs fX for which EX2 ≤ P

• Compute C explicitly first

• We’ll then show C is the supremum of achievable rates with arbitrarily low probability of error
for the channel in Eq. 4

9.3.1 Computing the AWGN Capacity

I(X;Y) =h(Y)− h(Y |X)

=h(Y)− h(X + Z|X)

=h(Y)− h(Z|X)

=h(Y)− h(Z)

Last Equality since Z is independent of X

• Z ∼ N (0, σ2).Hence h(Z) = 1
2

log 2πeσ2

• Note,
EY 2 = E(X + Z)2 = EX2 + 2E(XZ) + EZ2 = EX2 + σ2

(X,Z are independent ⇒ E(XZ) = EXEZ = 0)

• Therefore EX2 ≤ P implies EY 2 ≤ P + σ2 (With equality when EX2 = P)

KEY FACT: Among all random variables Y with EY 2 ≤ (P + σ2), the maximum differential entropy
is achieved when Y is Gaussian N (0, P + σ2)

Since Y = X + Z and EY 2 ≤ (P + σ2), the key fact implies:

h(Y) ≤ 1

2
log 2πe(P + σ2)

41

with equality if X is distributed as N (0, P). For this X:

I(X;Y) = h(Y)− 1

2
log 2πeσ2

=
1

2
log 2πe(P + σ2)− 1

2
log 2πeσ2

=
1

2
log

(
1 +

P

σ2

)
Therefore the capacity of the discrete-time AWGN channel with input constraint P and noise variance

σ2 is

C =
1

2
log

(
1 +

P

σ2

)
bits/transmission

• C depends only on the signal-to-noise ratio (snr) P
σ2

• If the channel has(baseband) bandwidth W, it can be used 2W times per second. Therefore, the
capacity in bits/s is

2W · 1

2
log

(
1 +

P

σ2

)
= W log

(
1 +

P

σ2

)
In the rest of the course, fixed modulation scheme is assumed and focus on designing good binary codes
for the binary erasure channel and the binary symmetric channel.

10 Binary Linear Block Codes

• Channel Encoder: Adds redundancy to the source bots in a controlled manner

• Channel Decoder: Recovers the source bits from the received bits by exploiting the redundancy

10.1 Block Code

An (n, k) binary block code maps every block of k data bits into a length n binary codeword

• Add redundancy ⇒ n > k

• The rate R of the code is R = k
n

• Assuming the codewords are distinct, the size of the code, i.e., the number of codewords, is M = 2k

Examples:

42

1) (n, 1) repetition code:
0 −→ 00 · · · 0 1 −→ 11 · · · 1

2) An(n = 5, k = 2) block code:

00 −→ 10101

01 −→ 10010

10 −→ 01110

11 −→ 11111

3) Single parity check (K + 1, k) code:

Given k data bits, to form the codeword, add a one (K + 1)th parity bit which is the binary
(modulo-two) sum of the k data bits.

E.g. with k = 4, this gives a (5,4) code with 16 codewords:

0000 −→ 00000

0001 −→ 00011

0010 −→ 00101

0011 −→ 00110

4) To prove the achievability in the channel coding theorem, a (n, k = nR) block code by generating
the codeword entries i.i.d. ∼ PX is generated.

This gives a rate-optimal code with very low probability of decoding-error, but computationally
infeasible to implement.

What makes a a good code?

• rate R = k/n as high as possible

• Low probability of decoding error

• Computationally efficient ways to encode ans decode.

compare Repetition code vs Single-paritycode on a BSC:

1) The (n, 1) repetition code with n odd:

• Decode: If the received word contains a majority of zeros, declare data bit to be 0; else
declare 1.

• Can reliably correct up to bn
2
c errors in the received word.

• But rate is only 1/n

2) The (K + 1, k) Single-parity code

• Has rate k/(k + 1), which → 1 as k → big

• But can only detect one error and cannot correct it

• E.g. with a (5, 4) single-parity code, suppose the data bits were (0, 0, 0, 1), received bits are
(0, 1, 0, 1, 1). There has been an error, but cannot correct the error.

43

10.2 Hamming distance of a code

• The Hamming distance d(x, y) between two binary sequences x,y of length n is the number of
positions in which x and y differs.

• Let B be a code with codewords {c1, ..., cM}. Then the minimum distance dmin is the smallest
Hamming distance between any pair of codewords. That is,

dmin = min
i 6=j

d(ci, cj)

10.3 Optimal decoding of a block code

• Given a block code B with codewords {c1, ..., cM}, the optimal decoder is the one that minimises
the probability of the decoding error.

• For any channel described by PY |X , if the input bits/messages corresponding to the codewords
are equally likely, then the optimal decoder given the received length-n sequence y is the max.-
likelihood decoder given by:

Decode ĉ = arg max
c∈{c1,...,M}

Pr(y|c)

10.3.1 Optimal decoding on the BSC(p)

Given the codeword c was transmitted and y was received, the number of channel errors is d(y, c) and
the number of correctly received bits is n− d(y, c). Hence

Pr(y|c) = pd(y,c)(1− p)n−d(y,c) = (1− p)n
(

p

1− p

)d(y,c)

Thus for p < 0.5, the optimal decoding rule is:

Decode ĉ = arg min
c∈{c1,...,M}

d(y, c)

i.e. the optimal decoder for BSC picks the codeword closest in Hamming distance to y.

44

The big red dots represent the codewords, the little ones are the other length n binary sequences.(Potentially
be received sequences)

Draw spheres of radius t centred on each codeword. Sphere centred at ci contains all the binary
sequence r such that d(ci, r) ≤ t

• If fewer than t errors occur, the received word r will lie within the sphere of the transmitted
codeword.

• Further, the spheres won’t overlap if 2t < dmin, or 2t ≤ dmin − 1. Therefore:

We can successfully correct any pattern of t errors if t ≤ bdmin−1
2 c

10.4 Linear Block Codes

10.4.1 Definition

A (n, k) linear block code (LBC) is defined in terms of k length-n binary vectors, say g
1
, ..., g

k
. A

Sequence of k data bits, say, x = (x1, ..., xk) is mapped to a length-n codeword c as follows.

c = x1g1
+ ...+ xkgk

This can be compactly written as

c = xG, where G =


g

1

g
2
...
g
k


• The k × n matrix G is called a Generator matrix of the code

• k is code dimension, n is the block dimension

• Matrix map 1× k row vector x to 1× n row vector c (We would have 2k of X)

• This matrix multiplication is over the binary field:

x+ x = 0, x+ x̄ = 1, x · 0 = 0, x · 1 = x

10.4.2 Example of LBC

Find the dimension and code corresponding to each of the following generator matrices.

G1 =

[
1 0 0 1
0 1 1 1

]
, G2 =

[
1 1 1 0
0 1 1 1

]
Each of the matrices defines a (4, 2) LBC. Hence the code dimension k = 2.

G1

x c
0 0 −→ 0 0 0 0
0 1 −→ 0 1 1 1
1 0 −→ 1 0 0 1
1 1 −→ 1 1 1 0

G2

x c
0 0 −→ 0 0 0 0
0 1 −→ 0 1 1 1
1 0 −→ 1 1 1 0
1 1 −→ 1 0 0 1

45

G1, G2 yield same set of codewords C but different mappings ⇒

The generator matrix for a code is not unique

Systematic generator matrices for a code is preferred.

G = [Ik | P]

where Ik is the k × k identity matrix and P is a k × (n− k) matrix.

10.4.3 Systematic Generator Matrices

For a systematic G = [Ik | P], the codeword corresponding to length-k data vector x is

c = xG = x · [Ik | P] = [x | xP]

The length-n codeword consists of the k data bits x, followed by (n− k) parity bits xP .

10.4.4 Converting to Systematic Form

Given any generator matrix, systematic version can be found:

1. Use elementary row operations: swap rows and/or replace any row by a sum of that row and any
other rows.

G2 =

[
1 1 1 0
0 1 1 1

]
R1=R1+R2−−−−−−→ Gsys =

[
1 0 0 1
0 1 1 1

]
If Gsys is obtained from G2 via elementary row operations, then they have the same set of code-
words; only the mappings are different.

2. To bring G1 into systematic form, may also need to swap columns. This leads to rearranging the
components of the codewords.

10.5 LBCs as Subspaces

• Let C be an (n, k) LBC with codewords {c0, ..., cM−1}

• C is a subspace of {0, 1}n, i.e., it is closed under vector addition and scalar multiplication.

• Proof: We need to show:

1) For any codewords ci, cj ∈ C, ci + cj ∈ C
– Let ci = a1g1

+ · · ·+ akgk, and cj = b1g1
+ · · ·+ bkgk. Then

ci + cj = (a1 + b1)g
1

+ · · ·+ (ak + bk)gk

Thus ci+ cj is the codeword corresponding to the data sequence x = (a1 + b1, ..., ak + bk),
and belong to C.

– For c ∈ C and c+ c = 0. This implies all-zero codeword 0 always belongs to C.

2) If c ∈ C, then 0 · c and 1 · c are in C.

– Proved by 0 · c = 0 and 1 · c = c

46

• Basis, dimension, orthogonality that are in Rn can be carried over to {0, 1}n.

Vectors u, v ∈ {0, 1}n are said to be orthogonal of uvT = 0

• However, a vector in {0, 1}n can be orthogonal to itself, different from Rn

• It helps to think of C being a k-dimensional subspace of {0, 1}n as similar to the plane x+y+z = 0
being a two-dimensional subspace of R3

Summary of properties of a (n, k) linear block code:

1. The code is a k-dimensional subspace of vectors from {0, 1}n

2. The rows of G,{g
1
, ..., g

k
} form a basis for C. Each codeword is a linear combination of basis

vectors: x1g1
+ ...+ xkgk.

3. The sum of any two codewords is also a codeword; the all-zero vector 0 is always a codeword.

10.6 The Parity Check Matrix

10.6.1 Definition

• The orthogonal complement of C, denoted C⊥ is defined as the set of all vectors in {0, 1}n that
are orthogonal to each vector in C.

• C⊥ is a subspace: if u, v ∈ C⊥, then for any c ∈ C, cuT = 0 and cvT = 0 ⇒ c(u + u)T = 0 ⇒
(u+ u) ∈ C⊥

• Since C has dimension k, can be shown that C⊥ has dimension (n− k).

• Thus we can find a basis {h1, ..., hn−k} for C⊥, expressed as

H =


h1

h2
...

hn−k


• The (n− k)× n matrix H is called the parity check matrix

• Each codeword c ∈ C is orthogonal to each row of H, i.e.,

cHT = 0 =⇒ xGHT = 0 for all x =⇒ GHT = 0

• Any H gives GHT = 0 is a valid parity check Matrix

47

10.6.2 Finding H

• If we have systematic G = [Ik | P], then take

H =
[
P T | In−k

]
• P is k × (n− k). P T is (n− k)× k, and

GHT = [Ik | P]

[
P
In−k

]
= P + P = 0

• Example: The (7, 4) Hamming code has parity check matrix

H =

1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1


From this, we can obtain the generator matrix:

G =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 0 1


The codewords satisfy cHT = 0. For the Hamming code, c = (c1, ..., c7), and a codeword bits must
satisfy:

c1 + c2 + c4 + c5 =0

C1 + c2 + c3 + c6 =0

c1 + c3 + c4 + c7 =0

These equations obtained from cHT = 0, are called the parity-check equations of the code.

• The parity matrix H is a complete description of the linear code, just like the generator matrix
G. Given H you can find G. Given G you can find H.

• THe codeowrds are precisely the binary sequences c ∈ {0, 1}n that satisfy

cHT = 0

i.e., the binary dot-product of a code-word with each row of H is 0.

10.7 Minimum Distance of an LBC

• The Hamming distance between two binary vectors u, v can be expressed as

d(u, v) = wt(u+ v),

where wt refers the Hamming weight(i.e., the number of ones) of the vector.

• Since the minimum distance of a code is

dmin = min
i 6=j

d(ci, cj) = min
i 6=j

wt(ci + cj)

48

• For any two codewords ci, cj of an LBC, note that ci + cj is also a codeword, say, ck. Therefore

dmin = min
i 6=j

d(ci, cj) = min
ck 6=0

wt(ck)

The minimum distance of an LBC equals the Hamming weight among the non-zero codewords.

Another useful property:

Let C be an linear block code with parity check matrix H.The minimum distance of C is the
smallest number of columns of H that sum to 0.

Example: Determine the dimension, dmin, and the guaranteed error correcting capability of an LBC
with

H =

1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1


• Since H : (n − k) × n and n − k = 3, n = 6. Hence the dimension k = 3, and there are 23 = 8

codewords.

• For dmin, observe that no two columns sum up to 0(only if there is identical columns) so try 3:
col1 + col4 + col5 = 0 ⇒ dmin = 3.

• For BSC: can correct any pattern of up to t errors if t ≤ bdmin−1
2
c ⇒ the above code can correct

all patterns of 1 error.

10.8 Performance of Block Codes over a BSC(p)

Since all error patterns of weight up to bdmin−1
2
c will be corrected. Hence prob. of correctly decoding

the codeword is at least the probability that the channel flips bdmin−1
2
c or fewer bits.

⇒ Pcorrect ≥
b(dmin−1)/2c∑

w=0

(
n

w

)
pW (1− p)n−w

⇒ Perror ≤ 1−
b(dmin−1)/2c∑

w=0

(
n

w

)
pW (1− p)n−w

49

10.9 A caveat about minimums-distance

• The above bound on Pe may be pessimistic because dmin only gives the guaranteed error correction
capability of the code.

• There may still be many error patterns of weight > bdmin−1
2
c that can be corrected : you only

cannot guarantee that every error pattern of weight t will be corrected if t > bdmin−1
2
c.

The discussion of pros and cons of minimum-distance as a design metric for codes is subtle which is not
examinable. The important fact is that:

dmin gives you the guaranteed error correction capability of a code, but the code may be able to
correct many more error patterns.

11 Low Density Parity Check(LDPC) Codes for the Binary

Erasure Channel

11.1 The Binary Erasure Channel (BEC)

• Capacity of BEC is (1− ε)

• We want to construct linear block codes with rate close to (1−ε) that have fast decoding algorithms
and low probability of decoding error.

• Besides being practically important (erasures models packet losses in internet), designing good
codes for the BEC gives insight into designing codes for general binary input channels.

11.2 Linear Codes for the BEC

Consider the code defined by the foll. 10× 16 parity check matrix. Since n = 16 and n− k = 10, k = 6
and the rate of the code is 3/8.

50

To recover the eight erased bits (denoted by a,b,...,h): a codeword C has to satisfy CHT = 0
⇒ Set binary dot-product of y with each row of H to 0

Contribution to dot products from known bits of y can be computed and moved to RHS. These
columns are greyed out:

We need to solve 8 binary variables from 10 linear equations.

• Possible if there are at least 8 independent rows in the effective 10× 8matrix (Entries in dark)

• Can solve the system of equations by performing elementary row operations to get the effective
matrix in lower/upper triangular form (By Gaussian elimination)

51

Information bits can be recovered directly if the code is systematic (this one isn’t)

• The above matrix-inversion/Gaussian-elimination decoder is optimal for the BEC.

• If the pattern of erasures is such that you cannot solve the resulting system of equations, you
cannot solve it using any other decoder either.

• Complexity of the above decoder scales like n3 with block length (due to Gaussian elimination) -
not too bad, but can we do better?

Next, faster iterative decoder that does opportunistic back-substitution is introduced.

11.3 Iterative Decoding

Look for a row which has exactly one 1 among the erased locations.

Let’s consider a different code defined by the following 10 × 16 parity check matrix. yf has eight
erased locations as before:

52

Setting binary dot-product of y with second row to 0 gives c = 0

Setting binary dot-product of y with fourth row to 0 gives g = 1

Setting binary dot-product of y with fifth row to 0 gives e = 1

53

Setting binary dot-product of y with seventh row to 0 gives h = 0 Setting binary dot-product of y
with eighth row to 0 gives b = 1

Third and sixth rows then give d = 0, a = 1, respectively

54

Finally, we decide f = 1

• Here we were lucky. However, iterative decoding won’t always work.

• what property must parity-check matrix have for iterative decoding to succeed with high proba-
bility?

– When the effective matrix can be triangulated by just row swaps, i.e., no linear combinations
of rows needed for Gaussian elimination.

• For this to happen for most erasure patterns, the parity check matrix needs to have a low density
of ones.

11.4 Low-Density Parity Check (LDPC) Matrix

The parity check matrix in our example:

We define:

55

• Weight of a row/columns: number of ones in the row/columns

• This is an irregular LDPC code. In a regular LDPC code, all rows have the same weight, and all
columns have the same weight.

11.4.1 Regular LDPC codes

Example of regular 10× 20 parity check matrix:

• In a regular (n, k) LDPC code:

– Each of the n codeword bits is involved in dv parity check equations (‘v’ → variable)

∗ Each variable involves in exact dv (3) parity check equation.

– Each of the (n-k) parity check equations involves dc code bits (‘c’ → check)

∗ Each row perform checks on dc (6) variables

• Number of ones in regular parity check matrix:

dvn = dc(n− k)

– In our example: dvn = 3 · 20 = 60 = dc(n− k) = 6 · 10 = 60

• The design rate of a regular LDPC code is k
n

= 1− dv
dc

– The design rate is the true code rate if the rows of the parity check matrix are linearly
independent.

– Otherwise, if there are redundant rows, which can be removed from the parity check matrix,
thus making the true code rate larger than the design rate.

• To describe a class of regular LDPC code, it suffices to specify dv and dc

• For irregular codes, we need to specify the weight distributions on the columns and rows.

• To analyse the iterative decoder and design good LDPC matrices, it is useful to represent into a
factor graph.

56

11.5 Factor graph of a linear code

Example: (n = 7, k = 4) Hamming code:

• Each column j of H is a variable node vj (represented by a circle)

• Each row i of H is a check/constraint node ci (represented by a square)

• A one in entry (i, j) of H means that variable node j is connected to check node i, i.e., code bit
j is involved in the parity check equation descried by the ith row.

11.6 Iterative Decoding as Message Passing

• Message passing is a class if iterative algorithms, where in each step:

1) Each variable node v sends a message to each check node c that it is connected to

2) Each check node c sends a message to each variable node v that it is connected to.

• These messages are denoted by {mvc} and {mcv}, respectively, for v ∈ {v1, v2, ..., } and c ∈
{c1, c2, ..., }

– The message mcv is a function of messages {mv′c} coming in from variable nodes v′ connected
to c (excluding v(self))

– The message mvc is a function of messages {mc′v} coming in from variable nodes c′ connected
to v (excluding c(self))

• The Figure above illustrates this rule for mc1v1 and mv1c2 .

• The message passing rules for decoding on the BEC are as follows.

– In the first step, mvc is the channel output corresponding to bit v: (0,1, or ?), and all check
nodes c send mcv =?

57

– In each subsequent step: (Remember ©− variable �− check)

– Check-to-Variable is more strict, any ? from from other incoming variable-to-check message
would result in a ?

– Variable-to-check is less strict, only when all of the incoming and the self variable is ?, the
outgoing message is ?

• Message Passing for the (7, 4) Hamming code

58

– Message-passing decoding of the (7, 4) Hamming code with the received word (0, ?, ?, 1, , ?, 0).

– A 0 message is indicated as thin line, 1 - thick line, ? - dashed line.

– The four rows corresponding to iterations 0 to 3.

– After the first iteration we recover x2 = 1

– After the second, x3 = 0

– After the third, x6 = 1

– The recovered codeword is (0, 1, 0, 1, 0, 1, 0).

• In summary, each step of the message-passing decoder:

– mvc: variable node v tells check node c its best guess of its own value (Based on the other
incoming messages).

– mcv: check node c tells variable node v what it thinks the value of v should be (Based on the
other incoming messages).

• The complexity of the message passing decoder

∝ (# edges in the graph)︸ ︷︷ ︸
nd̄v

(# of iterations)

59

• nd̄v is the number of ones. Therefore

Low density of ones in H −→ low complexity of decoder

11.7 Designing good LDPC codes

• Question:

1. Given an h, how do we predict its erasure-correcting performance with message passing
decoding?

2. How do we design H matrices that have good decoding performance?

• Simulation is a way, but it is computationally intensive. Some theoretical insight is needed.

– The standard way to construct an LDPC code is to first choose a degree distribution that
specifies the distribution of weights on the nodes/edges of the graph

– Then fix a (large) code length n, and pick an H with this degree distribution, either at
random or through some deterministic construction

11.8 Degree distributions

11.8.1 Node Perspective

• Define from the Node perspective

– Li: Fraction of left (variable) nodes of degree i, i.e., the fraction of columns in H with weight
i.

∗ For the above H, L2 = 6/10 L3 = 3/10 L4 = 1/10

– Ri: Fraction of right (check) nodes of degree i, i.e., the fraction of rows in H with weight i.

∗ For the above H, R4 = 1/5 L5 = 3/5 L6 = 1/5

• Node-perspective polynomials (easy for calculating average degree):

L(x) =

dv,max∑
i=1

Lixi, R(x) =

dc,max∑
i=1

Rixi

60

• For the above code with (n = 10, k = 5),

L(x) =
3

5
x2 +

3

10
x3 +

1

10
x4, R(x) =

1

5
x4 +

3

5
x5 +

1

5
x6.

– The average degree of a variable node is

d̄v =

dv,max∑
i=1

iLi = L′(1).

– The average degree of a check node is

d̄c =

dc,max∑
i=1

iRi = L′(1).

– The number of edges in the graph, equivalent to the number of ones in H is d̄vn = d̄c(n− k)

Hence the design rate of the code is k
n = 1− (d̄v/d̄c)

11.8.2 Edge Perspective

• Define from the Edge perspective

– λi: Fraction of edges connected to variable nodes of degree i, i.e., the fraction of ones in H
in columns of weight i.

∗ For the example above, λ2 = 12/25, λ3 = 9/25, λ4 = 4/25

– ρi: Fraction of edges connected to check nodes of degree i, i.e., the fraction of ones in H in
rows of weight i.

∗ For the example above, ρ4 = 4/25, ρ5 = 15/25, ρ6 = 6/25

• Edge-perspective polynomials:

λ(x) =

dv,max∑
i=1

λix
i−1, ρ(x) =

dc,max∑
i=1

ρix
i−1

61

• Average node degree:

d̄v =

(∫ 1

0

λ(x) dx

)−1

d̄c =

(∫ 1

0

ρ(x) dx

)−1

• Hence, the design rate:

k

n
= 1− (d̄v/d̄c) = 1−

(∫ 1

0

ρ(x) dx

/∫ 1

0

λ(x) dx

)
We then analyse the erasure-correcting performance (number of erasures could be corrected) of code
drawn uniformly at random from the ensemble with a given λ(x), ρ(x). The code length n is assumed
to be large.

11.9 Density Evolution

• Density evolution is a technique to predict the decoding performance of codes with a given
λ(x), ρ(x) for large n. Note that fixing λ(x), ρ(x) together also determine the rate k

n
= 1− (d̄v/d̄c).

• First consider the class of a regular LDPC codes. We would like to understand how regular codes
with a given (dv, dc) perform.

• E.g. dv = 3, dc = 6, i.e., λ(x) = x2, ρ(x) = x5

– Let pt denotes the probability that an outgoing v → c message (along an edge picked uni-
formly at random) is an erasure (‘?’) in step t. On a BEC with erasure probability ε, for
t = 0 , p0 = ε

– Let qt denotes the probability that an outgoing c→ v message is a ‘?’ in step t. For t = 0 ,
q0 = 1 since first c→ v messages are always erasures

• For t ≥ 1 assuming all the incoming messages at each variable/check node are Independent, we
have:

• Combining the two equations, we get:

pt = ε(1− (1− pt−1)dc−1)dv−1

62

The density evolution recursion predicts the fraction of erased bits at the end of each step t. We
initialise the recursion with p0 = ε. The target is to minimize pt after iterations.

• Example: Rate 1/2 code with dv = 3, dc = 6. The following graph shows pt vs. t for different ε :
ε = 0.40, 0.41, 0.42, 0.43

• Since pt is a fraction of erased bits after t steps of message passing, we want to find the maximum
ε for which pt gets close to 0 with growing t.

– For the (dv = 3, dc = 6) LDPC ensemble, using density evolution this threshold is found to
be εMP = 0.4294.

– The Shannon limit, i.e, the max.possible ε for reliable decoding with any rate R code, is
ε∗ = 1−R = 0.5

• A key assumption in density evolution is that the incoming messages at each node are independent.

– This is strictly true only if there are no cycles(loops) in the factor graph, i.e., the graph is a
tree.

– A practical LDPC code is almost never completely cycle-free. But the independence as-
sumption is usually close enough got large n as long as the factor graph does not have short
cycles.

11.10 Irregular codes

Irregular LDPC ensembles give us more flexibility in the code design, and can be optimized to get
reliable message passing decoding εMP closer to Shannon limit ε∗

• Consider an LDPC ensemble with λ(x) =
∑

i λix
i−1 and ρ(x) =

∑
i ρixi−1. Recall that:

– λi is the fraction of edges connected to degree-i variable nodes.

– ρi is the fraction of edges connected to degree-i check nodes.

• Similarly for irregular (λ(x), ρ(x)) ensembles:

– pt denotes the probability that an outgoing v → c message (along an edge picked uniformly
at random) is an erasure (‘?’) in step t. On a BEC, start with p0 = ε.

– qt denotes the probability that an outgoing c → v message is a ‘?’ in step t. Start with
q0 = 1.

63

• For t ≥ 1 assuming all the incoming messages are Independent:

Combining the two equations, we get the density evolution equation for a λ(x), ρ(x) ensemble:

pt = ελ(1− ρ(1− pt−1)).

• For a given rate R, we want to get the maixmum possible threshold εMP for which pt → 0.

– Need to optimize over λ(x), ρ(x) such that R = 1− (
∫
ρ/
∫
λ). which can be difficult and is

not examinable.

11.11 Summary

• For the BEC, the optimal decoder for a linear code solves the system of binary linear equations
obtained from yHT = 0

• Low density parity check matrices enable fast iterative decoding.

• LDPC codes can be represented in terms of a bipartite factor graph with variable nodes on one
side and check nodes on the other.

• The iterative decoder passes messages back and forth along the edges of the graph. The messages
represent iteratively refined estimates of what the code-bits are.

• An LDPC code is characterized by its degree distributions λ(x), ρ(x).

• Density evolution lets us predict the decoding performance of a given ensemble for large n. This
can be used to optimize the degree distributions.

64

12 LDPC Codes for the general binary input Channel

Three channels will be covered:

1. BEC(ε): covered before

2. BSC(p)

3. B-AWGN channel: Y = X + N , where the input X ∈ {+1,−1} and N ∼ N (0, σ2) is additive
white Gaussian noise.

For the B-AWGN channel, the input is generated from a binary (0/1) codeword as follows: map
each 0 code-bit to X = +1, and each 1 code-bit to X = −1.

12.1 Set-up

• LDPC code above could be used, and the information bits are mapped to codeword c = (c1, ..., cn)

• The codeword c is then transmitted over the channel. (For B-AWGN, ci = 0 → Xi = +1, ci =
1→ Xi = −1)

• The decoder receives y = (y1, ..., y2), and has to decode c.

12.2 Optimal decoding: Block-wise vs. Bit-wise

1) To minimize the probability of block (codeword) decoding error is

ĉ = arg max
c∈C

P (c|y) =(a) arg max
c∈C

P (y|c)

where (a) holds if all codewords are equally likely. Since

P (c|y) =
P (c) · P (y|c)

P (y)

and note that P(c) becomes constant when codewords are equally likely.

65

2) The optimal decoder for minimize the probability of bit decoding error, i.e., the probability of
decoding bit cj wrongly for j ∈ {1, ..., n}

Compute ĉj = arg max
cj∈{0,1}

P (cj|y) for j = 1, ..., n.

Both are valid decoding rules, optimal for two different error criteria but both are computationally
hard to implement for long codes. Why?

Consider the BSC(p):

1) The block-wise optimal decoding rule becomes

ĉ = arg max
c∈C

P (y|c) = arg max
c∈C

pd(y,c)(1− p)n−d(y,c) = arg min
c∈C

d(y, c)

Finding the codeword closest to y (among 2nR codewords) is hard

2) The bit-wise optimal decoding rule for a BSC is:

ĉj = arg max
cj∈{0,1}

P (cj|y) =(∗) arg max
b∈{0,1}

∑
c∈C:cj=b

(
p

1− p

)d(y,c)

This decoding is also hard, for each bit j, it requires to compute the sum on the RHS over all
codewords whose jth bit = 0 when fix the jth bit to 0 and do the same for 1 and compare.

12.3 Message Passing Decoding

12.3.1 Setup

Since optimal decoding is infeasible, MP decoding is considered.

• The MP algorithm will approximately compute the desired bit-wise a posteriori probabilities
(APPs) P (cj = 0|y).

• Index the variable nodes by j, j = 1, ..., n, and the check nodes by i, i = 1, ..., (n− k).

12.3.2 Algorithm

In each iteration, the message passing decodes computes:

1) Variable-to-check messages:

• Each v-node j sends a message mji to each c-node i that it is connected to.

66

• mji(0) is an updated estimate of the posterior probability (or belief) that the code
bit cj = 0

• mji is computed using the channel evidence P (cj|yj) and all the incoming messages into j
except from c-node i.

2) Check-to-variable messages:

• Each c-node i sends a message mij to each v-node j that it is connected to.

• mij(0) is an updated estimate of the probability that the parity check equation i is
satisfied when cj = 0.

• mij is computed using all the incoming messages into i except from v-node j.

Using the assumption that the incoming messages at each node are independent, we now derive the
message updates.

12.3.3 Variable-to-check messages

67

12.3.4 Check-to-variable messages

• For mij(0), we need to compute the probability of check equation i being satisfied when cj = 0.

• We do this using the incoming messages mj′i into c-node i.

• Recall mj′i is the estimated probability of cj′ being 0 vs. 1.

68

In general, we see that the message mij(0) is obtained by multiplying the incoming mj′i such that an
even number of these are evaluated at 1 and the rest at 0. The following result lets us express mij(0) in
a compact form: Consider a sequence of M independent binar digits b1, ..., bM such that P (bk = 1) = pk
for all k. Then the probability that the sequence (b1, ..., bM) contains an even number of ones is

1

2
+

1

2

M∏
k=1

(1− 2pk).

12.3.5 Overall decoding algorithm

The message passing decoding algorithm we just described is often called the sum-product algorithm
or belief propagation as the beliefs (posterior probabilities) of each code bit being 0/1 are updated
in ea ch step. The message passing updates are summarised below, where j ∈ {1, ..., n} is a v-node and
i ∈ {1, ..., n− k} is a c-node.

At t = 1, set mji(0) = P (cj = 0|yj) for all edges j → i. Also set mij(0) = 1
2

for all edges i→ j. For
step t > 1:

1. variable-to-check message:

mji(0) ∝ P (cj = 0|yj)
∏
i′/i

mi′j(0),

mji(1) ∝ P (cj = 1|yj)
∏
i′/i

mi′j(1),

mji(0) +mji(1) = 1.

2. Check-to-variable message:

mij(0) =
1

2
+

1

2

∏
j′/j

(1− 2mj′i(1)), mij(1) = 1−mij(0).

12.3.6 Example

Calculate the outgoing messages along the indicated edges from v-node j and c-node i, assuming that
the numbers on incoming edges are the messages (beliefs) evaluated at 0.

69

1. The outgoing message from v-node j along the indicated edge () is

mji2(0) =
0.1 ∗ 0.2 ∗ 0.4

0.1 ∗ 0.2 ∗ 0.4 + 0.9 ∗ 0.8 ∗ 0.6
= 0.0182

2. The outgoing message from c-node i along the indicated edge is

mij(0) =
1

2
+

1

2
(1− 2 ∗ 0.7)(1− 2 ∗ (0.6))(1− 2 ∗ (0.4)) = 0.0508

12.3.7 Computing P (cj|yj)

For each variable-to-check message involves the a posteriori probabilities (APPs) P (cj|yj). These can
be calculated using Bayes rule and the channel transition probabilities:

P (cj|yj) =
P (cj)P (yj|cj)

P (yj)

Compute APPs for BEC, BSC and the B-AWGN channel.

1. BEC(ε): yj ∈ {0, 1, ?}

P (cj = 0|yj) =


1, if yj = 0
0, if yj = 1

0.5, if yj =?.

2. BSC(p): yj ∈ {0, 1}

P (cj = 0|yj) =

{
1− p, if yj = 0,
p, if yj = 1,

3. B-AWGN channel: yj ∈ R

P (cj = 0|yj) = P (Xj = +1|yj)

=
PY |X(yj|+ 1)PX(+1)

PY |X(yj|+ 1)PX(+1) + PY |X(yj| − 1)PX(−1)

=

1√
2πσ

e−
(yj−1)2

2σ2 · 1/2

1√
2πσ

e−
(yj−1)2

2σ2 · 1/2 + 1√
2πσ

e−
(yj+1)2

2σ2 · 1/2

=
1

1 + e−
2yj

σ2

In all cases, P (cj = 1|yj) = 1− P (cj = 0|yj).
As the APPs are computed as above the message passing updates are exactly the same for all three

channels.

12.4 Log-domain message passing

• The messages in the above decoding algorithm involve multiplying lots of probabilities, which can
cause the implementation to be numerically unstable.

• So belief propagation decoding is usually implemented with log-likelihood ratios (LLRs), which
turns most of the multiplications into additions.

70

Message log-likelihood ratios can be denoted by:

Lji := ln
mji(0)

mji(1)
, Lij := ln

mij(0)

mij(1)
.

To update the messages, we also need the channel evidence in LLR form:

L(yj) := ln
P (cj = 0|yj)
P (cj = 1|yj)

= ln
P (cj = 0)P (yj|cj = 0)

P (cj = 1)P (yj|cj = 1)
= ln

P (yj|cj = 0)

P (yj|cj = 1)

The L(yj) can easily be computed from the APPs before:

1. BEC(ε): yj ∈ {0, 1, ?}

L(yj) =


∞, if yj = 0
∞, if yj = 1
0, if yj =?.

2. BSC(p): yj ∈ {0, 1}

L(yj) =

{
ln 1−p

p
, if yj = 0,

− ln 1−p
p
, if yj = 1,

3. B-AWGN channel: yj ∈ R

L(yj) = ln
1

e−
2yj

σ2

=
2yj
σ2
.

The LLR-based belief propagation updates are given below, where j ∈ {1, ..., n} is a v-node and
i ∈ {1, ..., n− k} is a c-node.

At t = 1, set Lji = L(yj) for all edges j → i, where L(yj) for each channel is given above.
Also set Lij = 0 for all edges i→ j. For step t > 1:

1. variable-to-check-message:

Lji = L(yj) +
∑
i′/i

Li′j

2. Check-to-variable message:

Lij = 2 tanh−1

∏
j′/j

(
1

2
Lj′i

)
12.5 Algorithm termination

The algorithm is run for a pre-determined number of steps, and the final LLRs for each code bit are
computed as

Lj = L(yj) +
∑
i′

Li′j, for j = 1, ..., n

where the sum in this final stage is over all the checks i′ connected to code bit j.

• A high positive value of Lj indicates a high probability (strong belief) that the code bit j equals
0.

• A high negative value of Lj indicates a high probability (strong belief) that the code bit j equals
1.

The final decoded codeword is ĉ = (ĉ1, ..., ĉn) where

ĉj =

{
0 if Lj ≥ 0
1 if Lj < 0

71

12.6 Complexity of decoding

• The complexity of any message passing decoder

∝ (# edges in the graph)︸ ︷︷ ︸nd̄v(# of iterations)

low density of ones in H → low complexity of decoder

• There are reduced-complexity versions of message passing.

– The min-sum algorithm simplifies the c-to-v message involving tanh and tanh−1 as follows.
Using sign(x) ∈ {+1,−1} to denote the sign of x, we compute Lij = sign(Lij)|Lij|, where

signLij =
∏
j′/j

sign(Lj′i) and |Lij| = min
j/j
|Lj′i|.

• The performance of min-sum is slightly worse than belief propagation, but it is easier to implement
in hardware.

12.7 Constructing good LDPC codes

• LDPC codes are typically constructed by first choosing a pair of degree distributions λ(x), ρ(x)
which yield the desired rate.

• Then pick an H matrix (factor graph) with this degree distribution. This can be done in a random
or deterministic manner.

• For a given rate R, the goal is to choose (λ(x), ρ(x)) to give reliable decoding up to as high a noise
level as possible.

• Analogous to the BEC, one can derive density evolution equations.

12.8 Summary

We derived the sum-product/Belief-propagation (BP) decoder for LDPC codes over general binary-input
symmetric output channels. (BEC, BSC, and B-AWGN are three such channels.)

Key principles

• Computing the optimal bit-wise posterior prob. P (cj|y) is hard. The BP decoder iteratively
approximates these using “locally” available information at each node, i.e. channel output +
messages coming into the node.

• Messages passed along each edge of the graph represent beliefs about the bit the edge is connected
to.

• Messages are always formed using extrinsic information: the message sent along an edge does not
depend on the incoming message along the same edge.

72

